vkam
@f6ar8qp96dtmnkjj
Joined Nov 6, 2023
0
Following
0
Followers
2.04k
11.02k
236
www.science.org/doi/full/10.1126/science.1115581
Mar 7, 2025
7
onlinelibrary.wiley.com/doi/10.1111/php.14047?af=R
Mar 7, 2025
12
ag.umass.edu/greenhouse-floriculture/fact-sheets/photoperiod-control-systems-for-greenhouse-crops
Mar 6, 2025
4
phys.org/news/2018-01-circadian-clock-pace-growth.html
Mar 6, 2025
2
phys.org/news/2021-03-bedtime-alarm-survival.html
Mar 6, 2025
2
phys.org/news/2021-06-faster-day.html
Mar 6, 2025
3
www.diva-portal.org/smash/get/diva2:349785/FULLTEXT01.pdf
Mar 6, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC23986/
Mar 6, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC8509212/
Mar 6, 2025
7
pmc.ncbi.nlm.nih.gov/articles/PMC1425852/
Mar 6, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC9002540/
Mar 6, 2025
3
www.mathworks.com/help/predmaint/ug/Rolling-Element-Bearing-Fault-Diagnosis.html
Mar 6, 2025
3
liquidinstruments.com/blog/what-is-power-spectral-density-and-why-is-it-important/
Mar 6, 2025
1
www.pnas.org/doi/10.1073/pnas.93.26.15491
Mar 5, 2025
17
pmc.ncbi.nlm.nih.gov/articles/PMC133565/pdf/pp1201001607.pdf
Mar 5, 2025
14
digital.kenyon.edu/summerscienceprogram/551/
Mar 5, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC535858/pdf/pp1364285.pdf
Mar 5, 2025
35
pmc.ncbi.nlm.nih.gov/articles/PMC11479355/
Mar 5, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC9176247/
Mar 5, 2025
10
link.springer.com/article/10.1186/s12915-017-0443-x
Mar 5, 2025
3
link.springer.com/article/10.1007/s11103-021-01172-6
Mar 5, 2025
6
link.springer.com/article/10.1007/s00425-005-0009-y
Mar 5, 2025
7
onlinelibrary-wiley-com.ezpv7-web-p-u01.wpi.edu/doi/full/10.1055/s-2002-35440
Mar 5, 2025
1
www.cell.com/current-biology/fulltext/S0960-9822(11)00474-X
Mar 5, 2025
3
academic.oup.com/jxb/article/73/13/4514/6565331
Mar 5, 2025
23
pmc.ncbi.nlm.nih.gov/articles/PMC11468893/
Mar 5, 2025
7
imagej.net/plugins/bonej
Mar 1, 2025
2
www.nature.com/articles/s41378-022-00431-w
Feb 28, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC7459612/
Feb 28, 2025
5
www.nature.com/articles/s41598-020-76682-2
Feb 28, 2025
8
journals.plos.org/plosone/article?id=10.1371/journal.pone.0037333
Feb 28, 2025
1
www.nature.com/articles/s41598-020-57915-w
Feb 26, 2025
3
pmc.ncbi.nlm.nih.gov/articles/PMC4035049/
Feb 26, 2025
2
www.ibm.com/docs/en/spss-statistics/30.0.0?topic=data-statistics-table
Feb 13, 2025
1
www.mathworks.com/help/stats/cluster-analysis-example.html
Feb 13, 2025
7
rinterested.github.io/statistics/power_law.html
Feb 6, 2025
2
www.sciencedirect.com/science/article/pii/S001282521930594X
Feb 5, 2025
2
bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-12-70
Feb 5, 2025
27
journals.biologists.com/jcs/article-split/75/1/131/59701/Immunofluorescence-microscopy-of-microtubules-in
Feb 5, 2025
12
www.nature.com/articles/nature09766
Feb 5, 2025
3
www.mdpi.com/1422-0067/22/5/2626
Feb 5, 2025
26
pmc.ncbi.nlm.nih.gov/articles/PMC2773642/
Feb 5, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC4850436/
Feb 5, 2025
2
www.tandfonline.com/doi/epdf/10.1080/15572536.2006.11832788?needAccess=true
Feb 5, 2025
4
app.jove.com/v/60613/application-membrane-cell-wall-selective-fluorescent-dyes-for-live
Feb 5, 2025
3
www.sciencedirect.com/science/article/pii/S1749461321000373
Feb 5, 2025
5
academic.oup.com/plphys/article/152/2/787/6108732
Feb 5, 2025
9
academic.oup.com/jxb/article/69/22/5325/5085387
Feb 5, 2025
19
academic.oup.com/view-large/figure/126192502/ery31702.jpg
Feb 5, 2025
1
www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.121.318868
Feb 5, 2025
1
www.ahajournals.org/doi/suppl/10.1161/CIRCRESAHA.121.318868
Feb 5, 2025
1
www.nature.com/articles/s42003-020-01215-6
Feb 5, 2025
3
www.nature.com/articles/srep38276
Feb 5, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC3502204/
Jan 31, 2025
19
www.embopress.org/doi/full/10.1038/sj.emboj.7600057
Jan 30, 2025
1
translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04766-4
Jan 30, 2025
1
www.nature.com/articles/s42003-021-01731-z
Jan 30, 2025
3
www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00137/full
Jan 30, 2025
4
www.nature.com/articles/s41583-021-00455-7
Jan 30, 2025
8
journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001084
Jan 30, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC3704449/
Jan 30, 2025
354
pmc.ncbi.nlm.nih.gov/articles/PMC7465510/
Jan 30, 2025
23
pmc.ncbi.nlm.nih.gov/articles/PMC3032981/
Jan 30, 2025
1
www.nature.com/articles/s41398-023-02668-z?fromPaywallRec=false
Jan 29, 2025
4
www.nature.com/articles/s42003-024-06936-6?fromPaywallRec=false
Jan 29, 2025
14
www.nature.com/articles/nn1316
Jan 29, 2025
32
pmc.ncbi.nlm.nih.gov/articles/PMC1965569/
Jan 29, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC9579467/
Jan 29, 2025
4
www.mdpi.com/1422-0067/25/4/2009
Jan 29, 2025
3
www.nature.com/articles/nn0206-157
Jan 29, 2025
4
pmc.ncbi.nlm.nih.gov/articles/PMC5268365/
Jan 29, 2025
3
www.sciencedirect.com/science/article/pii/S0306452224006304
Jan 29, 2025
10
www.elegansmodel.com/wmicrotracker-one.html
Jan 29, 2025
3
www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2024.1462238/full
Jan 29, 2025
53
pmc.ncbi.nlm.nih.gov/articles/PMC10354834/
Jan 29, 2025
2
pubmed.ncbi.nlm.nih.gov/?format=abstract&size=50&linkname=pubmed_pubmed_citedin&from_uid=33446520
Jan 29, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC2667818/
Jan 29, 2025
7
royalsocietypublishing.org/doi/10.1098/rspb.2021.0128
Jan 29, 2025
6
usq.pressbooks.pub/statisticsforresearchstudents/chapter/repeated-measures-anova-assumptions/
Jan 29, 2025
2
www.nature.com/articles/s41598-023-46576-0
Jan 29, 2025
3
www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
Jan 28, 2025
1
www.sciencedirect.com/science/article/pii/S0022519306001627
Jan 28, 2025
4
wormbase.org/species/c_elegans/gene/WBGene00006748
Jan 28, 2025
1
www.sciencedirect.com/science/article/pii/S0896627301800507?via%3Dihub
Jan 28, 2025
4
pmc.ncbi.nlm.nih.gov/articles/PMC2799740/
Jan 28, 2025
29
pmc.ncbi.nlm.nih.gov/articles/PMC5623142/
Jan 28, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC18287/
Jan 28, 2025
7
pmc.ncbi.nlm.nih.gov/articles/PMC357011/
Jan 28, 2025
5
bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-5-74
Jan 28, 2025
4
pmc.ncbi.nlm.nih.gov/articles/PMC1304017/
Jan 28, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC8943819/
Jan 28, 2025
7
physics.aps.org/articles/v12/s138
Jan 28, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC6672570/
Jan 27, 2025
7
pmc.ncbi.nlm.nih.gov/articles/PMC524730/
Jan 27, 2025
1
pmc.ncbi.nlm.nih.gov/articles/PMC1382314/
Jan 27, 2025
9
www.sciencedirect.com/science/article/pii/S0896627300808491?via%3Dihub
Jan 27, 2025
17
pmc.ncbi.nlm.nih.gov/articles/PMC3079264/
Jan 27, 2025
2
pmc.ncbi.nlm.nih.gov/articles/PMC2797131/
Jan 27, 2025
8
pmc.ncbi.nlm.nih.gov/articles/PMC4871723/
Jan 27, 2025
15
In wild type and in long– and short–circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.
Circadian clocks produce an internal estimate of time that synchronizes biological events with external day-night cycles (1). Clocks with similar properties and regulatory architecture have evolved at least four times, indicating that circadian rhythms confer a selective advantage (2). In plants, circadian rhythms control gene expression, stomatal opening, and the timing component of photoperiodism, which regulates seasonal reproduction, but the basis for their contribution to fitness during vegetative growth remains undetermined
We demonstrate that when correctly tuned, the Arabidopsis circadian system enhances chlorophyll content, photosynthetic carbon fixation, and growth. We also show that circadian enhancement of photosynthesis leads to improved survival and competitive advantage.
We hypothesized that matching the endogenous clock period (τ) with the period of exogenous light-dark cycles (T) [so called “circadian resonance” (7)] provides an advantage by optimizing the phase relation between clock-controlled biology and exogenous day-night cycles.
To test this hypothesis, we compared the performance of wild-type plants with lines having mutations that alter clock period length, in a range of environmental period lengths (“T cycles”) that were either matched or unmatched to the endogenous clock period.
Last, the effect of circadian arrhythmia on growth and physiology was investigated in well-characterized arrhythmic plants overexpressing the molecular oscillator component CCA1 (CCA1-ox), and compared with rhythmic wild types
We assessed the contribution of circadian resonance to carbon fixation, biomass, and leaf chlorophyll.