I couldn't do this integral when I was 3... | Summary and Q&A

166.1K views
β€’
December 4, 2019
by
blackpenredpen
YouTube video player
I couldn't do this integral when I was 3...

TL;DR

Jesus discusses the integration of Ln(x) using a substitution method and introduces the concept of the polylogarithm function.

Install to Summarize YouTube Videos and Get Transcripts

Key Insights

  • ☺️ Integration of Ln(1-x) can be approached using a substitution method and the polylogarithm function.
  • 🫰 The polylogarithm function is defined as a series with two indices.
  • ❓ The polylogarithm function is connected to the Riemann zeta function when x=1.
  • 🫰 The polylogarithm function has a notation of Li_s(x), where s represents the index and x represents the input.

Transcript

but then was Jesus told I tried to integrate Ln of one month into the expired couldn't because I didn't have any special function for it but today I do so we'll see how to finish this right here of course we will take a used substitution let u equal to e to the X and we see that D U is equal to e to the X DX and DX is equal to tu over e to the X wh... Read More

Questions & Answers

Q: How does Jesus approach the integration of Ln(1-x)?

Jesus uses a substitution method, setting u equal to e^x, and rewrites the integral as Ln(1-u). He then integrates Ln(1-u) using a power series expansion.

Q: What is the polylogarithm function?

The polylogarithm function, denoted as Li_s(x), is defined as a series where the index n ranges from 1 to infinity. It is used to express integrals and has a connection to the Riemann zeta function.

Q: How is the polylogarithm function related to the Riemann zeta function?

The polylogarithm function is related to the Riemann zeta function when x=1. When x=1, Li_s(x) equals the Riemann zeta function.

Q: What is the connection between the polylogarithm function and the concept of the "best friend"?

L I_0(x) is equal to x times the "best friend" function. Jesus mentions that he will discuss this connection further in a future video.

Summary & Key Takeaways

  • Jesus demonstrates how to integrate Ln(1-x) using a substitution method and a power series expansion.

  • He introduces the polylogarithm function, which is defined as a series with two indices, and discusses its connection to the Riemann zeta function.

  • Jesus explains that the polylogarithm function can be used to express the integral of Ln(1-x) as a series.

  • He concludes by mentioning that the polylogarithm function is connected to the concept of the best friend, and promises to discuss this further in the future.

Share This Summary πŸ“š

Summarize YouTube Videos and Get Video Transcripts with 1-Click

Download browser extensions on:

Explore More Summaries from blackpenredpen πŸ“š

Summarize YouTube Videos and Get Video Transcripts with 1-Click

Download browser extensions on: