naoya
@7oyat
https://scrapbox.io/tnkw708
Joined Mar 9, 2023
3
Following
5
Followers
102
436
300
goodpatch.com/blog/inclusive-design
Jan 23, 2025
9
s-modern.com/column/4342/
Jan 23, 2025
5
twitter.com/fladdict
Jan 23, 2025
1
note.com/tanukiponkich/n/n1c8e7bcaf50d
Jan 23, 2025
3
www.paulgraham.com/woke.html
Jan 23, 2025
1
twitter.com/chibegichan
Jan 22, 2025
1
twitter.com/LangChainAI
Jan 22, 2025
1
x.com/fladdict/status/774988305062506496
Jan 15, 2025
2
note.com/tanukiponkich/n/n0fb49f72cf19
Jan 13, 2025
5
www.rain.hyarc.nagoya-u.ac.jp/~tsuboki/ronbun/outline/method.html
Jan 11, 2025
1
microsoft.github.io/autogen/0.2/docs/tutorial/conversation-patterns/
Jan 11, 2025
6
forbesjapan.com/articles/detail/76093/page3
Jan 7, 2025
1
forbesjapan.com/articles/detail/76093/page2
Jan 5, 2025
1
forbesjapan.com/articles/detail/76093?read_more=1
Jan 5, 2025
1
medium.com/@ipeksahbazoglu/building-a-multi-agent-system-with-langgraph-and-gemini-1e7d7eab5c12
Dec 12, 2024
11
note.com/meson_tokyo/n/n79427c41f850
Dec 12, 2024
1
note.com/npaka/n/nce9297f81d26
Dec 12, 2024
1
note.com/peisuke/n/n4d0d77a044b5
Dec 12, 2024
1
www.threads.net/@langchain.ai/post/DB15WktTuPg/how-to-use-grounding-with-google-search-in-langchaintech-threads
Dec 4, 2024
1
note.com/horishou/n/n2445d82a894c
Nov 13, 2024
1
microsoft.github.io/autogen/0.2/docs/Use-Cases/enhanced_inference/
Oct 29, 2024
11
www.hakuhodo.co.jp/uploads/2015/03/20150325_r.pdf
Oct 9, 2024
7
note.com/ishicoro/n/n919452263165
Sep 24, 2024
3
note.com/yazzle_dazzle/n/nc5975ad4b88d
Aug 19, 2024
2
note.com/yazzle_dazzle/n/n7cda6ad2ebe3
Aug 19, 2024
21
note.com/kazu_kai/n/ndadab73d3d87
Aug 12, 2024
1
note.com/_go_kiritani/n/n863bf4d9ea8a?sub_rt=share_pb
Aug 11, 2024
4
note.com/mikiok/n/n911485d0b52e
Jul 25, 2024
1
www.handk-inc.co.jp/blog/product-making
Jul 23, 2024
3
www.sbbit.jp/article/cont1/95227
Jul 22, 2024
1
yamotty.tokyo/post/20160126
Jul 19, 2024
3
yamotty.tokyo/9176a171a0d8444094e90ef5fbba221e
Jul 19, 2024
2
note.com/shocolt76/n/n9a0c469d4868
Jul 16, 2024
5
note.com/ozyozyo/n/nfb370fadd70c
Jul 12, 2024
4
note.com/35_mki/n/n2c24676177a1
Jul 12, 2024
2
ieiri.co/n/nb789f4617335?sub_rt=share_h
Jul 11, 2024
11
onecapital.jp/dx-advisory/blog/linear
Jul 9, 2024
11
product-design.jp/words/information-architecture/
Jul 9, 2024
2
smhn.info/202407-google-os-fuchsia
Jul 9, 2024
1
The tunable hyperparameters include:
model - this is a required input, specifying the model ID to use.
prompt/messages - the input prompt/messages to the model, which provides the context for the text generation task.
max_tokens - the maximum number of tokens (words or word pieces) to generate in the output.
temperature - a value between 0 and 1 that controls the randomness of the generated text. A higher temperature will result in more random and diverse text, while a lower temperature will result in more predictable text.
top_p - a value between 0 and 1 that controls the sampling probability mass for each token generation. A lower top_p value will make it more likely to generate text based on the most likely tokens, while a higher value will allow the model to explore a wider range of possible tokens.
n - the number of responses to generate for a given prompt. Generating multiple responses can provide more diverse and potentially more useful output, but it also increases the cost of the request.
stop - a list of strings that, when encountered in the generated text, will cause the generation to stop. This can be used to control the length or the validity of the output.
presence_p